Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Stefanus Otto

Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa

Correspondence e-mail:
stefanus.otto@inorg.lu.se

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.038$
$w R$ factor $=0.071$
Data-to-parameter ratio $=26.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Chloro(methyl)bis(triphenylphosphine)palladium(II)

The crystal structure of the title compound, trans$\left[\mathrm{PdCl}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$, was found to be isomorphous with several related platinum(II) and palladium(II) complexes. The Pd atom has a slightly distorted square-planar geometry, with most important bond lengths and angles of $\mathrm{Pd}-\mathrm{P}=2.3289$ (7) and $2.3224(7) \AA, \quad \mathrm{Pd}-\mathrm{Cl}=2.4227(6) \AA$ and $\mathrm{Pd}-\mathrm{C}=$ 2.054 (2) \AA, and $\mathrm{P}-\mathrm{Pd}-\mathrm{P}=177.38(2)^{\circ}, \mathrm{P}-\mathrm{Pd}-\mathrm{Cl}=$ 88.97 (2) and $89.03(2)^{\circ}$, and $\mathrm{C}-\mathrm{Pd}-\mathrm{Cl}=175.23(8)^{\circ}$.

Comment

As part of a systematic investigation of the structure-reactivity relationships for the platinum group metal complexes, crystals of (I), trans-chloro(methyl)bis(tripenylphosphine)palladium(II), were prepared. The complex was found to be isomorphous with the platinum analogue (Bardi \& Piazzesi, 1981), as well as with the closely related palladium and platinum triphenylarsine complexes (Rath et al., 1995; Roodt et al., 1995).

(I)

The Pd atom has a slightly distorted square-planar coordination environment with the phosphine ligands in a trans orientation. The $\mathrm{P} 1-\mathrm{Pd}-\mathrm{P} 2$ angle is $177.38(2)^{\circ}$, with $\mathrm{Pd}-\mathrm{P} 1$ and $\mathrm{Pd}-\mathrm{P} 2$ bond distances of 2.3289 (7) and 2.3224 (7) \AA, respectively (see Table 1). The $\mathrm{Pd}-\mathrm{Cl}$ bond is relatively long at 2.4227 (6) A, obviously due to a strong labilizing influence of a trans-Me ligand [$\mathrm{Pd}-\mathrm{C} 12.054$ (2) \AA]. The $\mathrm{C} 1-\mathrm{Pd}-\mathrm{Cl}$ angle of $175.23(8)^{\circ}$ deviates substantially from 180°. The slight distortion of the Pd square-planar coordination is also manifested in some decrease of the $\mathrm{P} 1-\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{P} 2-\mathrm{Pd}-$ Cl [88.97 (2) and 89.03 (2) ${ }^{\circ}$, respectively] and a corresponding increase of the $\mathrm{C} 1-\mathrm{Pd}-\mathrm{P} 1$ and $\mathrm{C} 1-\mathrm{Pd}-\mathrm{P} 2$ angles [91.50 (7) and 90.63 (7) ${ }^{\circ}$, respectively].

All bond distances and angles within the PPh_{3} ligands are within normal ranges (see Table 1). The PPh_{3} groups are in almost perfectly eclipsed conformation with the biggest pseudo-torsion angle of the $\mathrm{C}_{\mathrm{Ph}}-\mathrm{P} 1 \cdots \mathrm{P} 2-\mathrm{C}_{\mathrm{Ph}}$ type being equal to only 7.5°.

In Table 2, the title compound is compared with other closely related $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$ complexes from the literature. It is

Received 4 January 2001
Accepted 10 January 2001
Online 19 January 2001

Figure 1
The structure of (I) showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms are of arbitrary size.
noteworthy that all complexes with the general formula $\left[M R Y\left(E \mathrm{Ph}_{3}\right)_{2}\right]$, where $M=\mathrm{Pd}$ or $\mathrm{Pt}, R Y=\mathrm{Cl}_{2}$ or MeCl , and $E=$ P or As, belong to one of just two types of isomorphous structures. The non-symmetric complexes with $R Y=\mathrm{MeCl}$ are isomorphous with the title compound ($P 2_{1} / n, Z=4$, type I), whereas the complexes with symmetric substitution $\left(R Y=\mathrm{Cl}_{2}\right)$ crystallize in the triclinic system, the molecule of the complex occupying a special position on the inversion centre ($P \overline{1}, Z=1$, type II). The triclinic modification of complex $\left[\mathrm{PtMeCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (Otto et al., 1995) presents a notable exception from this rule: this structure accommodates a nonsymmetric molecule within the type II crystal structure, the Me group and Cl atoms being disordered over two positions related by the inversion centre.

Another observation, which follows from the data presented in Table 2, is that the $\mathrm{Pt}-L$ bonds are slightly shorter than the $\mathrm{Pd}-L$ bonds in corresponding complexes with differences of $c a 0.030$ and $0.020 \AA$ for $L=\mathrm{P}$ and As, respectively. This observation could, to some extent, be explained by the difference in the covalent radii of Pd ($1.380 \AA$) and $\mathrm{Pt}(1.370 \AA$) (Sheldrick, 1997). The $M-\mathrm{Cl}$ bonds are very similar though, while no conclusive deductions could be made concerning the $M-\mathrm{C}$ bond distance due to the large uncertainty associated with them.

Experimental

[$\mathrm{PdMeCl}(\mathrm{COD})]$ was prepared according to the literature (Chatt et al., 1957; Rülke et al., 1993). Crystals were obtained using the following procedure: a solution of $21 \mathrm{mg}(0.079 \mathrm{mmol})$ of PPh_{3} in 5 ml of acetone was added very carefully (so as to disturb the mixture as little as possible) to a solution of $10 \mathrm{mg}(0.037 \mathrm{mmol})$ of $[\mathrm{PdMeCl}(\mathrm{COD})]$ in 5 ml of acetone. Light yellow prisms of the title compound soon precipitated from the reaction mixture and were collected by filtration in an almost quantitative yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.65-7.76(m, 15 \mathrm{H}), 7.30-7.45(m, 18 \mathrm{H}),-0.035\left(t, 3 \mathrm{H},{ }^{3} J_{\mathrm{P}-}\right.$ $\mathrm{H}=12.5 \mathrm{~Hz})$ p.p.m. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right) 31.2$ p.p.m.

Crystal data

$\left[\mathrm{PdCl}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]$
$M_{r}=681.42$
Monoclinic, $P 2_{1} / n$
$a=11.8068$ (4) \AA
$b=23.3389$ (9) \AA
$c=12.3650(5) \AA$
$\beta=11.537(1)^{\circ}$
$V=3169.4$ (2) \AA^{3}
$Z=4$

Data collection

Siemens SMART CCD diffractometer
ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.621, T_{\text {max }}=0.735$
32413 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.071$
$S=0.85$
9837 reflections
372 parameters
$D_{x}=1.428 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5564
reflections
$\theta=2.2-24.4^{\circ}$
$\mu=0.80 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, light yellow
$0.37 \times 0.24 \times 0.11 \mathrm{~mm}$

9837 independent reflections
4925 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.076$
$\theta_{\text {max }}=31.7^{\circ}$
$h=-17 \rightarrow 17$
$k=-34 \rightarrow 32$
$l=-18 \rightarrow 18$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0243 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.43 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.61 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Pd-P1	$2.3289(7)$	$\mathrm{P} 1-\mathrm{C} 121$	$1.825(3)$
$\mathrm{Pd}-\mathrm{P} 2$	$2.3224(7)$	$\mathrm{P} 1-\mathrm{C} 131$	$1.835(2)$
$\mathrm{Pd}-\mathrm{Cl}$	$2.4227(6)$	$\mathrm{P} 2-\mathrm{C} 211$	$1.828(2)$
$\mathrm{Pd}-\mathrm{C} 1$	$2.054(2)$	$\mathrm{P} 2-\mathrm{C} 221$	$1.830(2)$
$\mathrm{P} 1-\mathrm{C} 111$	$1.827(3)$	$\mathrm{P} 2-\mathrm{C} 231$	$1.815(3)$
$\mathrm{C} 1-\mathrm{Pd}-\mathrm{P} 1$	$91.50(7)$	$\mathrm{C} 111-\mathrm{P} 1-\mathrm{Pd}$	$115.52(8)$
$\mathrm{C} 1-\mathrm{Pd}-\mathrm{P} 2$	$90.63(7)$	$\mathrm{C} 121-\mathrm{P} 1-\mathrm{Pd}$	$109.92(9)$
$\mathrm{P} 1-\mathrm{Pd}-\mathrm{P} 2$	$177.38(2)$	$\mathrm{C} 131-\mathrm{P} 1-\mathrm{Pd}$	$119.01(8)$
$\mathrm{C} 1-\mathrm{Pd}-\mathrm{Cl}$	$175.23(8)$	$\mathrm{C} 211-\mathrm{P} 2-\mathrm{C} 221$	$103.27(11)$
$\mathrm{P} 1-\mathrm{Pd}-\mathrm{Cl}$	$88.97(2)$	$\mathrm{C} 211-\mathrm{P} 2-\mathrm{C} 231$	$107.09(12)$
$\mathrm{P} 2-\mathrm{Pd}-\mathrm{Cl}$	$89.03(2)$	$\mathrm{C} 221-\mathrm{P} 2-\mathrm{C} 231$	$100.86(11)$
$\mathrm{C} 111-\mathrm{P} 1-\mathrm{C} 121$	$105.56(11)$	$\mathrm{C} 211-\mathrm{P} 2-\mathrm{Pd}$	$113.09(8)$
$\mathrm{C} 111-\mathrm{P} 1-\mathrm{C} 131$	$101.16(11)$	$\mathrm{C} 221-\mathrm{P} 2-\mathrm{Pd}$	$120.36(8)$
$\mathrm{C} 121-\mathrm{P} 1-\mathrm{C} 131$	$104.27(11)$	$\mathrm{C} 231-\mathrm{P} 2-\mathrm{Pd}$	$110.81(8)$
$\mathrm{Cl}-\mathrm{Pd}-\mathrm{P} 1-\mathrm{C} 111$	$65.25(9)$	$\mathrm{C} 1-\mathrm{Pd}-\mathrm{P} 2-\mathrm{C} 211$	$-70.73(9)$
$\mathrm{C}-\mathrm{Pd}-\mathrm{P} 1-\mathrm{C} 121$	$-54.03(8)$	$\mathrm{C} 1-\mathrm{Pd}-\mathrm{P} 2-\mathrm{C} 221$	$166.67(10)$
$\mathrm{C} 1-\mathrm{Pd}-\mathrm{P} 1-\mathrm{C} 131$	$-174.08(10)$	$\mathrm{C} 1-\mathrm{Pd}-\mathrm{P} 2-\mathrm{C} 231$	$49.52(9)$

The data were collected on a Siemens SMART CCD diffractometer using an exposure time of 20 s per frame. A total of 1890 frames were collected with a frame width of 0.25° being used.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: SHELXL97.

Table 2
Comparative X-ray data for trans-[$\left.\operatorname{MRCl}(L)_{2}\right](M=\mathrm{Pd}, \mathrm{Pt} ; R=\mathrm{Me}$, $\mathrm{CH}_{2} \mathrm{Cl}, \mathrm{Ph}, \mathrm{Cl}$ and $L=$ tertiary phosphine- or arsine ligand) complexes.

Notes: (a) see Comment section for definition of structure types.
References: (i) this work; (ii) Rath et al. (1995); (iii) Bardi \& Piazzesi (1981); (iv) Otto et al. (1995); (v) Roodt et al. (1995); (vi) Otto et al. (2000); (vii) McCrindle et al. (1995); (viii) Flemming et al. (1998); (ix) Ferguson et al. (1982); (x) Johansson \& Otto (2000).

Financial assistance of the South African FRD and the Research Fund of the University of the Free State is gratefully acknowledged. The Chemical Centre of Lund University, Sweden, is thanked for the use of the diffractometer.

References

Bardi, R. \& Piazzesi, A. M. (1981). Inorg. Chim. Acta. 47, 249-254.
Brandenburg, K. (1997). DIAMOND. University of Bonn, Germany.
Chatt, J., Vallarino, L. M. \& Venanzi, L. M. (1957). J. Chem. Soc. pp. 34133416.

Ferguson, G., McCrindle, R., McAlees, A. J. \& Parvez, M. (1982). Acta Cryst. B38, 2679-2681.
Flemming, J. P., Pilon, M. C., Borbulevitch, O. Y., Antipin, M. Y. \& Grushin, V. V. (1998). Inorg. Chim. Acta, 280, 87-98.

Johansson, M. H. \& Otto, S. (2000). Acta Cryst. C56, e12-e15.
McCrindle, R., Ferguson, G., McAlees, A. J., Arsenault, G. J., Gupta, A. \& Jennings, M. C. (1995). Organometallics, 14, 2741-2748.
Otto, S., Roodt, A. \& Leipoldt, J. G. (1995). S. Afr. J. Chem. 48, 114-119.
Otto, S., Roodt, A. \& Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.
Rath, N. P., Ladipo, F. T. \& Anderson, G. K. (1995). Acta Cryst. C51, 12891290.

Roodt, A., Otto, S. \& Leipoldt, J. G. (1995). Acta Cryst. C51, 1105-1106.
Rülke, R. E., Ernsting, J. M., Spek, A. L., Elsevier, C. J., Van Leeuwen, P. W. N. M. \& Vrieze, K. (1993). Inorg. Chem. 32, 5769-5778.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

